Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 416]
|
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
|
|
|
Сложность: 4+ Классы: 9,10
|
Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и C > 1000 rad(ABC)?
|
|
|
Сложность: 4+ Классы: 10,11
|
Два выпуклых многоугольника A1A2...An и B1B2...Bn (n ≥ 4) таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что V(36, 2) = 5). Докажите, что V(n, b) < n/b.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
С ненулевым числом разрешается проделывать следующие
операции:
x
,
x
. Верно ли, что из каждого ненулевого
рационального числа можно получить каждое рациональное
число с помощью конечного числа таких операций?
Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 416]