ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 397]      



Задача 34887

Темы:   [ Доказательство от противного ]
[ Парадоксы ]
Сложность: 3+
Классы: 7,8,9,10

Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
Прислать комментарий     Решение


Задача 97945

Темы:   [ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 7,8,9

2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и вынимать яблоки из корзин.
Доказать, что можно добиться того, чтобы во всех оставшихся корзинах было поровну яблок, а общее число яблок было не меньше 100.

Прислать комментарий     Решение

Задача 65074

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа  k = 1, 2, ..., n  нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?

Прислать комментарий     Решение

Задача 66149

Темы:   [ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?

Прислать комментарий     Решение

Задача 115984

Тема:   [ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.
Может ли случиться, что у любых двух соседних чисел модуль разности не меньше 30, но не больше 50?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 397]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .