Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 488]
|
|
Сложность: 3 Классы: 6,7,8
|
Докажите, что числа от 1 до 16 можно записать в строку,
но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел
была квадратом натурального числа.
|
|
Сложность: 3 Классы: 8,9,10
|
На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.
Какое наибольшее число различных может быть среди чисел на доске?
|
|
Сложность: 3 Классы: 8,9,10
|
В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
На каждой из 15 планет, расстояния между которыми попарно различны, находится по астроному, который наблюдает ближайшую к нему планету. Докажите, что некоторую планету никто не наблюдает.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 488]