Страница:
<< 1 2 3
4 >> [Всего задач: 16]
Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?
|
|
Сложность: 4 Классы: 9,10,11
|
Числовое множество
M , содержащее 2003 различных положительных числа, таково,
что для любых трех различных элементов
a,b,c из
M
число
a2
+bc рационально.
Докажите, что можно выбрать такое натуральное
n , что для любого
a
из
M число
a рационально.
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.
|
|
Сложность: 5+ Классы: 10,11
|
В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два
ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них
учится лучше другого. Доказать, что число учеников в школе не больше .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)
Страница:
<< 1 2 3
4 >> [Всего задач: 16]