Страница: << 1 2 3 4 >> [Всего задач: 16]
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.
|
|
Сложность: 4- Классы: 8,9,10
|
Можно ли разбить множество целых чисел на три подмножества так, чтобы для
любого целого значения n числа n, n - 50, n + 1987 принадлежали трём
разным подмножествам?
|
|
Сложность: 4+ Классы: 8,9,10
|
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A1, A2, A3, ... так, чтобы при любом натуральном k сумма
всех чисел, входящих в подмножество Ak, равнялась k + 2013?
|
|
Сложность: 4+ Классы: 9,10,11
|
Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число. (Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число (не пересекающих друг друга) бесконечных конгруэнтных подмножеств?
|
|
Сложность: 5 Классы: 9,10,11
|
Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое.
После такого посещения они ссорятся настолько, что никакие двое из них после
этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.
Страница: << 1 2 3 4 >> [Всего задач: 16]