Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 165]
|
|
Сложность: 8+ Классы: 10,11
|
Двое играют в такую игру. Один задумывает натуральное
число n, а другой задаёт вопросы типа «верно ли, что
n не
меньше x» (число x он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной
стратегии T второго игрока сопоставим функцию
fT(
n), равную числу вопросов (до отгадывания), если было задумано
число n. Пусть, например,
стратегия T состоит в том, что сначала задают вопросы: «верно ли, что
n не меньше 10?», «верно ли, что
n не меньше 20?», ... до тех пор, пока на какой-то вопрос «верно ли, что
n не меньше 10(
k + 1)» не будет дан ответ «нет», а затем задают вопросы «верно ли, что
n не меньше
10k + 1», «верно ли, что
n не меньше
10k + 2» и так далее. Тогда
fT(n) = a + 2 + (n – a)/10, где
a — последняя цифра
числа n, то есть
fT(
n) растёт примерно
как n/10.
а) Предложите стратегию, для которой функция fT растёт медленнее.
б) Сравнивая две стратегии, удобно для произвольной стратегии Т вместо функции fT ввести функцию fT, значение которой для любого натурального числа n равно наибольшему из чисел fT(k), где k пробегает значения от 1 до n. Оцените снизу fT для произвольной стратегии T.
На столе лежат две кучки камней: в
первой кучке 10 камней, а во
второй - 15. За ход
разрешается разделить любую кучку
на две меньшие. Проигрывает тот, кто
не сможет делать ход. Может ли
выиграть второй игрок?
|
|
Сложность: 3 Классы: 8,9,10,11
|
У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?
Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?
|
|
Сложность: 3+ Классы: 6,7,8
|
Людоедом называется фантастическая шахматная фигура, которая может ходить как шахматный король – на соседнюю клетку по вертикали или горизонтали, но не может ходить по диагонали. Два людоеда стоят на противоположных угловых полях шахматной доски и начинают ходить по очереди. Людоеду, вставшему на клетку, где уже стоит другой людоед, разрешается им пообедать. Кто кого съест при правильной игре и как ему надо для этого играть?
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 165]