Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 165]
|
|
Сложность: 5+ Классы: 9,10,11
|
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает
n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (
n+1)
2 попыток?
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Игра ``Шоколадка''.
Имеется шоколадка, состоящая
из
6×8 = 48 долек. Одна из долек отмечена:
Двое игроков по очереди разламывают ее по какой-нибудь прямой,
делящей шоколадку на дольки, и съедают ту половину, которая не
содержит отмеченной дольки. Проигрывает тот, кто не может сделать
хода, то есть ему остается лишь одна отмеченная долька.
а) Опишите выигрышную стратегию в этой игре. Кто из игроков
выиграет при данных начальных условиях?
б) При каких размерах шоколадки начинающий игрок выигрывает при
любом расположении отмеченной дольки?
в) При каких размерах шоколадки начинающий игрок проигрывает при
любом расположении отмеченной дольки?
|
|
Сложность: 6- Классы: 9,10,11
|
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами.
В вершине
A квадрата
ABCD находится нора: если в нее, в
отсутствие лисы, попадает хотя бы один заяц, то игра проиграна.
Лиса ловит зайца, как только оказывается с ним в одной точке
(возможно, в точке
A ). Вначале лиса сидит в точке
C , а
зайцы – в точках
B и
D . Лиса бегает повсюду со скоростью не
больше
v , а зайцы – по лучам
AB и
AD со скоростью не
больше 1. При каких значениях
v лиса сможет поймать
обоих зайцев?
|
|
Сложность: 6 Классы: 7,8,9
|
Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго?
Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу p крестиков, а второму — q ноликов.
|
|
Сложность: 6 Классы: 8,9,10,11
|
Имеется несколько кучек камней.
Двое по очереди берут из них камни. За один ход разрешается взять
из одной кучки от 1 до 5 камней. Определите выигрышную
стратегию в этой игре, если тот, кто взял последний камень а)
выигрывает; б) проыигрывает.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 165]