Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 416]
а) В треугольнике
ABC, длины сторон которого
рациональные числа, проведена высота
BB1. Докажите, что
длины отрезков
AB1 и
CB1 — рациональные числа.
б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре
треугольника, длины сторон которых — рациональные числа.
|
|
Сложность: 7+ Классы: 10,11
|
Докажите, что для угла Брокара
выполняются следующие
неравенства:
а)
(
-
)(
-
)(
-
);
б)
8
(
неравенство Йиффа).
|
|
Сложность: 2 Классы: 7,8,9
|
Решить в натуральных числах уравнение:
|
|
Сложность: 2+ Классы: 6,7,8,9
|
Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно [α/d].
|
|
Сложность: 3- Классы: 7,8,9
|
В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.
Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 416]