Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 418]
|
|
Сложность: 2+ Классы: 6,7,8,9
|
Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно [α/d].
|
|
Сложность: 3- Классы: 7,8,9
|
В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Координаты вершин треугольника рациональны. Докажите,
что координаты центра его описанной окружности также рациональны.
|
|
Сложность: 3 Классы: 10,11
|
К графикам функций $y=\cos x$ и $y=a \tan x$ провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого $a\neq0$.
Найдите все значения а, для которых выражения
а +
и 1/а –
принимают целые значения.
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 418]