Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 418]
|
|
Сложность: 3+ Классы: 10,11
|
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале (0, 1).
[Формула Лежандра]
|
|
Сложность: 4- Классы: 8,9,10
|
Число n! разложено в произведение простых чисел:
Докажите равенство 
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что если квадратное уравнение с целыми коэффициентами имеет корень [
], то вторым корнем служит число
|
|
Сложность: 4- Классы: 10,11
|
При каких n многочлен (x + 1)n + xn + 1 делится на:
а) x² + x + 1; б) (x² + x + 1)²; в) (x² + x + 1)³?
|
|
Сложность: 4- Классы: 10,11
|
Исследуйте последовательности на сходимость:
а)
xn + 1 =
, x0 = 1;
б)
xn + 1 = sin xn,
x0 = a
(0;
);
в)
xn + 1 =
, a > 0, x0 = 0.
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 418]