Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 418]
[Формула Эйлера]
|
|
Сложность: 4+ Классы: 10,11
|
Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством
Докажите формулу Эйлера:
ea+ib = ea(cos b + i sin b).
|
|
Сложность: 4+ Классы: 9,10,11
|
Дано натуральное число n > 3. Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет.
Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ..., где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
б) точка Cn совпадает с C?
|
|
Сложность: 4+ Классы: 10,11
|
Рассматривается последовательность, n-й член которой есть первая цифра числа 2n.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если (x+
)(y+
)=1 , то x+y=0 .
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 418]