ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



Задача 65921

Темы:   [ Периодичность и непериодичность ]
[ Композиции симметрий ]
Сложность: 3+
Классы: 10,11

Функция  f(x) определена для всех действительных чисел, причем для любого x выполняются равенства  f(x + 2) = f(2 – x)  и  f(x + 7) = f(7 – x).
Докажите, что  f(x) – периодическая функция.

Прислать комментарий     Решение

Задача 66111

Темы:   [ Ограниченность, монотонность ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
  а) Могло ли случиться, что до a5 последовательность убывает  (a1 > a2 > a3 > a4 > a5),  а начиная с a5 – возрастает  (a5 < a6 < a7 < ...)?
  б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?

Прислать комментарий     Решение

Задача 66162

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 9,10,11

Число x таково, что обе суммы  S = sin 64x + sin 65x  и  C = cos 64x + cos 65x  – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.

Прислать комментарий     Решение

Задача 66354

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 3+
Классы: 9,10,11

Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

Прислать комментарий     Решение

Задача 108604

Темы:   [ Существование определенного интеграла ]
[ Теоремы Чевы и Менелая ]
[ Подобные треугольники (прочее) ]
[ Векторы сторон многоугольников ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки P, M и K так, что отрезки AM, BK и CP пересекаются в одной точке и      Докажите, что P, M и K – середины сторон треугольника ABC.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .