ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 67]      



Задача 105102

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 5,6,7,8

Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

Прислать комментарий     Решение

Задача 54734

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны три точки A, B и C, причём  AB = 3,  BC = 5.  Чему может быть равно AC?

Прислать комментарий     Решение

Задача 54735

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны четыре точки A, B, C и D, причём  AB = 1,  BC = 2,  CD = 4.  Чему может быть равно AD?

Прислать комментарий     Решение

Задача 54743

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой даны точки A, B и C. Известно, что  AB = 5,  а отрезок AC длиннее BC на 1. Найдите AC и BC.

Прислать комментарий     Решение

Задача 54760

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .