Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 603]
В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD.
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.
|
|
Сложность: 3 Классы: 7,8,9
|
В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой.
Докажите, что DE – биссектриса угла ADF.
Внутри параллелограмма ABCD отметили точку E так, что CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.
На стороне правильного восьмиугольника во внешнюю сторону построен квадрат. В восьмиугольнике проведены две диагонали, пересекающиеся в точке $B$ (см. рисунок). Найдите величину угла $ABC$.
(Многоугольник называется правильным, если все его стороны равны и все его углы равны.)
Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 603]