Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 352]
Точки M и N — середины равных сторон AD и BC четырёхугольника ABCD. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P. Докажите, что серединный перпендикуляр к отрезку MN проходит через точку P.
Найдите диагонали четырёхугольника, образованного биссектрисами внутренних углов прямоугольника со сторонами 1 и 3.
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d.
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12.
Найдите стороны параллелограмма.
Через произвольную точку внутри квадрата проведены две взаимно перпендикулярные прямые, каждая из которых пересекает две противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключённые внутри квадрата, равны.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 352]