ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 355]      



Задача 53323

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите признаки равенства прямоугольных треугольников:
  а) по двум катетам;
  б) по катету и прилежащему острому углу;
  в) по катету и гипотенузе;
  г) по гипотенузе и острому углу.

Прислать комментарий     Решение

Задача 53642

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 54110

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.

Прислать комментарий     Решение

Задача 54913

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Точка M – середина стороны CD параллелограмма ABCD, точка H – проекция вершины B на прямую AM.
Докажите, что треугольник CBH равнобедренный.

Прислать комментарий     Решение

Задача 55202

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Неравенства с векторами ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Отрезок, соединяющий середины двух противоположных сторон выпуклого четырёхугольника, равен полусумме двух других сторон.
Докажите, что этот четырёхугольник – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 355]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .