Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 355]
В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что
хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.
Диагонали четырёхугольника ABCD пересекаются в точке E. Известно, что AB = CE, BE = AD, ∠AED = ∠BAD. Докажите, что BC > AD.
Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (см. рис.).
Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.
На сторонах прямоугольного треугольника, вне его, построены квадраты. Известно, что шесть вершин квадратов, не принадлежащих треугольнику, лежат на окружности радиуса 1. Найдите стороны треугольника.
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 355]