Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD.
Точка M расположена внутри треугольника ABC. Известно, что треугольники AMB, AMC и BMC равновелики.
Докажите, что M – точка пересечения медиан треугольника ABC.
Точки D, E и F выбраны на сторонах AC, AB и BC равнобедренного треугольника ABC (AB = BC) так, что DE = DF и при этом ∠BAC = ∠FDE.
Докажите, что AE + FC = AC.
Точки P и Q лежат на сторонах соответственно BC и CD квадрата ABCD, причём треугольник APQ – равносторонний. Прямая, проходящая через точку P перпендикулярно стороне AQ, пересекает AD в точке E. Точка F расположена вне треугольника APQ, причём треугольники PQF и AQE равны.
Докажите, что FE = 2FC.