Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 239]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?
|
|
Сложность: 3+ Классы: 7,8,9
|
На медиане AM треугольника ABC нашлась такая точка K, что AK = BM. Кроме того, ∠AMC = 60°.
Докажите, что AC = BK.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC на продолжении медианы CM за точку C отметили точку K так, что AM = CK. Известно, что угол BMC равен 60°.
Докажите, что AC = BK.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к стороне AB пересекает прямую AC в точке N. Серединный перпендикуляр к стороне AC пересекает прямую AB в точке M. Докажите, что CB = MN.
В выпуклом четырёхугольнике ABCD диагонали АС и BD равны, а серединный перпендикуляр к стороне ВС проходит через середину стороны AD.
Могут ли длины всех сторон четырёхугольника быть различными?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 239]