Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 312]      



Задача 54365

Темы:   [ Площадь трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD известно, что $ \angle$BAD = 90o, $ \angle$ADC = 30o. Окружность, центр которой лежит на отрезке AD, касается прямых AB, BC и CD. Найдите площадь трапеции, если радиус окружности равен R.

Прислать комментарий     Решение


Задача 54801

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В окружность радиуса R вписан равнобедренный треугольник ABC (AB = BC) с углом BAC, равным $ \alpha$. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 54802

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике KLM (KL = LM) угол KLM равен $ \varphi$. Найдите отношение радиусов вписанной и описанной окружностей треугольника KLM.

Прислать комментарий     Решение


Задача 54821

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике высоты, опущенные на основание и боковую сторону, равны соответственно m и n. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 55281

Темы:   [ Теорема синусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол BAC равен 60o, высота, опущенная из вершины C на сторону AB, равна $ \sqrt{3}$, а радиус окружности, описанной около треугольника ABC, равен 5. Найдите стороны треугольника ABC.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .