ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В одном стакане было молоко, а в другом – столько же кофе. Из стакана молока перелили одну ложку в стакан с кофе и размешали. Затем такую же ложку смеси перелили обратно в стакан с молоком. Чего теперь больше: кофе в стакане с молоком или молока в стакане с кофе?

Вниз   Решение


На острове Невезения с населением 96 человек правительство решило провести пять реформ. Каждой реформой недовольна ровно половина всех граждан. Гражданин выходит на митинг, если он недоволен более чем половиной всех реформ. Какое максимальное число людей правительство может ожидать на митинге?

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 449]      



Задача 102345

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике KLM проведён отрезок MD, соединяющий вершину прямого угла с точкой D на гипотенузе KL так, что длины отрезков DL, DM и DK различны и образуют в указанном порядке геометрическую прогрессию со знаменателем $ \sqrt{2}$, причём DL = 1. Найдите величину угла KMD.
Прислать комментарий     Решение


Задача 102346

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC проведён отрезок CK, соединяющий вершину прямого угла с точкой K на гипотенузе AB так, что длины отрезков BK, CK и AK различны и образуют в указанном порядке геометрическую прогрессию, причём CK = 2. Найдите радиус окружности, описанной около треугольника ABC, если AC = 3.
Прислать комментарий     Решение


Задача 52412

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC известны стороны: AB = 6, BC = 4, AC = 8. Биссектриса угла C пересекает сторону AB в точке D. Через точки A, D и C проведена окружность, пересекающая сторону BC в точке E. Найдите площадь треугольника ADE.

Прислать комментарий     Решение


Задача 53283

Темы:   [ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Ромбы. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В ромбе ABCD из вершины B на сторону AD опущен перпендикуляр BE. Найдите углы ромба, если 2$ \sqrt{3}$CE = $ \sqrt{7}$AC.

Прислать комментарий     Решение


Задача 53819

Темы:   [ Теорема косинусов ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Точка O — центр окружности, вписанной в равнобедренный треугольник ABC (AB = BC). Прямая AO пересекает отрезок BC в точке M. Найдите углы и площадь треугольника ABC, если AO = 3, OM = $ {\frac{27}{11}}$.

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .