ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



Задача 79404

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
[ Площадь треугольника (через высоту и основание) ]
[ Целочисленные треугольники ]
Сложность: 4
Классы: 9,10

Радиус вписанной в треугольник окружности равен $ {\frac{4}{3}}$, а длины высот треугольника — целые числа, сумма которых равна 13. Вычислить длины сторон треугольника.
Прислать комментарий     Решение


Задача 65045

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Примеры и контрпримеры. Конструкции ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 9,10,11

Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

Прислать комментарий     Решение

Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть la , lb и lc – длины биссектрис углов A , B и C треугольника ABC , а ma , mb и mc – длины соответствующих медиан. Докажите, что

+ + >1

Прислать комментарий     Решение

Задача 54447

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC гипотенуза AB равна c и  ∠B = α.  Найдите все медианы этого треугольника.

Прислать комментарий     Решение

Задача 57596

Темы:   [ Теорема косинусов ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 3
Классы: 8,9,10

Докажите, что медианы AA1 и BB1 треугольника ABC перпендикулярны тогда и только тогда, когда  a2 + b2 = 5c2.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .