ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 46]      



Задача 110850

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC , в котором AB=BC , AC=6 , высота AD= . На биссектрисе CE выбрана точка F такая, что CF=CE . Через точку F проведена прямая l , параллельная BC . Найдите расстояние от центра окружности, вписанной в треугольник ABC , до прямой l .
Прислать комментарий     Решение


Задача 79404

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
[ Площадь треугольника (через высоту и основание) ]
[ Целочисленные треугольники ]
Сложность: 4
Классы: 9,10

Радиус вписанной в треугольник окружности равен $ {\frac{4}{3}}$, а длины высот треугольника — целые числа, сумма которых равна 13. Вычислить длины сторон треугольника.
Прислать комментарий     Решение


Задача 65045

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Примеры и контрпримеры. Конструкции ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 9,10,11

Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

Прислать комментарий     Решение

Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть la , lb и lc – длины биссектрис углов A , B и C треугольника ABC , а ma , mb и mc – длины соответствующих медиан. Докажите, что

+ + >1

Прислать комментарий     Решение

Задача 66732

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Три медианы треугольника разделили его углы на шесть углов, среди которых ровно k больше 30 градусов. Каково наибольшее возможное значение k?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .