ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



Задача 54708

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Медианы треугольника ABC, проведённые из вершин B и C, равны 6 и 9 и пересекаются в точке M. Известно, что $ \angle$BMC = 120o. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 54977

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.

Прислать комментарий     Решение

Задача 55003

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Основание треугольника равно 20; медианы, проведённые к боковым сторонам, равны 18 и 24. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 55007

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медианы BD и CE; M — их точка пересечения. Докажите, что треугольник BMC равновелик четырёхугольнику ADME.

Прислать комментарий     Решение


Задача 55114

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Медианы AN и BM треугольника ABC равны 6 и 9 соответственно и пересекаются в точке K, причём угол AKB равен 30o. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .