ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1275]      



Задача 52384

Темы:   [ Вписанный угол равен половине центрального ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3+
Классы: 8,9

Трапеция с высотой h вписана в окружность. Боковая сторона трапеции видна из центра окружности под углом 120o. Найдите среднюю линию трапеции.

Прислать комментарий     Решение


Задача 52426

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке B, S2 — в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через точку A.

Прислать комментарий     Решение


Задача 53034

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD диагональ BD равна 2, угол C равен 45o, причём прямая CD касается окружности, описанной около треугольника ABD. Найдите площадь параллелограмма ABCD.

Прислать комментарий     Решение


Задача 76516

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.
Прислать комментарий     Решение


Задача 77884

Темы:   [ Вписанный угол (прочее) ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .