Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 501]      



Задача 67363

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Нилов Ф.

Окружность $\omega$ касается прямых $a$ и $b$ в точках $A$ и $B$ соответственно. Произвольная касательная к $\omega$ пересекает $a$ и $b$ в точках $X$ и $Y$ соответственно. Точки $X'$ и $Y'$ симметричны точкам $X$ и $Y$ относительно $A$ и $B$ соответственно. Найдите геометрическое место проекций центра окружности на $X'Y'$.
Прислать комментарий     Решение


Задача 52358

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Вершина A треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что $ \angle$BAH = $ \angle$OAC.

Прислать комментарий     Решение


Задача 52371

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Продолжения биссектрис остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что высоты треугольника A1B1C1 лежат на прямых AA1, BB1иCC1.

Прислать комментарий     Решение


Задача 52399

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

AM — биссектриса треугольника ABC. Точка D принадлежит стороне AC, причём $ \angle$DMC = $ \angle$BAC. Докажите, что BM = MD.

Прислать комментарий     Решение


Задача 108505

Темы:   [ Теорема косинусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В окружность радиуса 5 вписан квадрат. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 6. Найдите расстояния от этой точки до трёх других вершин квадрата.

Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .