Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 501]
Диагонали трапеции ABCD с основаниями AD и BC
пересекаются в точке O. Точки B' и C' симметричны вершинам B и C относительно биссектрисы угла BOC. Докажите, что C'AC = ∠B'DB.
D и E – точки касания окружности, вписанной в треугольник ABC, со сторонами BC и AC. На биссектрису угла A опустили перпендикуляр BK. Докажите, что точки D, E и K лежат на одной прямой.
Окружность с центром O касается сторон угла в точках A и B. Через произвольную точку M отрезка AB, отличную от точек A и B, проведена прямая, перпендикулярная прямой OM и пересекающая стороны угла в точках C и D. Докажите, что MC = MD.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник ABC и построена вневписанная окружность с центром O, касающаяся стороны BC и продолжений сторон AB и AC. Точка O1 симметрична точке O относительно прямой BC. Найдите величину угла A, если известно, что точка O1 лежит на описанной около треугольника ABC окружности.
|
|
Сложность: 3+ Классы: 9,10,11
|
Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если ∠ВАО = ∠DAC,
AC = m, BD = n.
Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 501]