Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501]      



Задача 101903

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Из точки C проведены две касательные к окружности, A и B – точки касания. На окружности взята точка M, отличная от A и B. Из точки M опущены перпендикуляры MN, ME, MD на стороны AB, BC, CA треугольника ABC соответственно. Найдите площадь треугольника MNE, если известны стороны  MN = 4,  MD = 2  и  ∠ACB = 120°.

Прислать комментарий     Решение

Задача 101904

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружность касается сторон AB и AC треугольника ABC, D и E – точки касания. На окружности взята точка F, отличная от D и E. Из точки F опущены перпендикуляры FG, FH, FK на стороны AD, AE, DE соответственно. Найдите площадь треугольника GKF, если  FK = 6,  FH = 9  и  ∠BAC = 60°.

Прислать комментарий     Решение

Задача 108125

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что  KL || O1O2.

Прислать комментарий     Решение

Задача 108237

Темы:   [ Теорема синусов ]
[ Вспомогательная окружность ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

Автор: Кноп К.А.

В треугольнике ABC взята такая точка O, что  ∠COA = ∠B + 60°,  ∠COB = ∠A + 60°, AOB = ∠C + 60°.  Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны.

Прислать комментарий     Решение

Задача 108927

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

На стороне BC остроугольного треугольника ABC взята точка K. Биссектриса угла CAK вторично пересекает описанную окружность треугольника ABC в точке L. Докажите, что если прямая LK перпендикулярна отрезку AB, то либо  AK = KB,  либо  AK = AC.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .