Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501]
Из точки C проведены две касательные к окружности, A и B – точки касания. На окружности взята точка M, отличная от A и B. Из точки M опущены перпендикуляры MN, ME, MD на стороны AB, BC, CA треугольника ABC соответственно. Найдите площадь треугольника MNE, если известны стороны MN = 4, MD = 2 и ∠ACB = 120°.
Окружность касается сторон AB и AC треугольника ABC, D и E – точки касания. На окружности взята точка F, отличная от D и E. Из точки F опущены перпендикуляры FG, FH, FK на стороны AD, AE, DE соответственно. Найдите площадь
треугольника GKF, если FK = 6, FH = 9 и ∠BAC = 60°.
Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что KL || O1O2.
|
|
Сложность: 4- Классы: 8,9,10
|
В треугольнике ABC взята такая точка O, что ∠COA = ∠B + 60°, ∠COB = ∠A + 60°, AOB = ∠C + 60°. Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны.
На стороне BC остроугольного треугольника ABC взята точка K. Биссектриса угла CAK вторично пересекает описанную окружность треугольника ABC в точке L. Докажите, что если прямая LK перпендикулярна отрезку AB, то либо AK = KB, либо AK = AC.
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501]