Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 46]
Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведёнными из той же вершины.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что в любом неравнобедренном
треугольнике биссектриса лежит между медианой
и высотой, проведенными из той же вершины.
Даны треугольник ABC (AB > AC) и
описанная около него окружность. Постройте циркулем и линейкой
середину дуги BC (не содержащей вершину A), проведя не более
двух линий.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 46]