ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 772]
Окружность радиуса 1 вписана в треугольник ABC, в котором
cos
Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.
В параллелограмме ABCD диагональ AC перпендикулярна стороне
AB. Некоторая окружность касается стороны BC параллелограмма
ABCD в точке P и касается прямой, проходящей через вершины A и B
этого же параллелограмма, в точке A. Через точку P проведён
перпендикуляр PQ к стороне AB (точка Q — основание этого
перпендикуляра). Найдите угол ABC, если известно, что
площадь параллалограмма ABCD равна
Площадь прямоугольника ABCD равна 1. Некоторая окружность касается диагонали AC прямоугольника ABCD в точке E и касается прямой, проходящей через вершины C и D этого же прямоугольника, в точке D. Через точку E проведён перпендикуляр EF к стороне CD (точка F — основание этого перпендикуляра). Найдите угол BAC, если известно, что площадь трапеции AEFD равна a.
Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке