Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 330]
Даны две точки
A и
B и окружность
S . С помощью циркуля и
линейки постройте окружность, проходящую через точки
A и
B и
касающуюся окружности
S .
Дана прямая l и точки A и B по одну сторону от неё. С
помощью циркуля и линейки постройте на прямой l точку X,
для которой
AX + BX = a, где a — данная величина.
|
|
|
Сложность: 5 Классы: 9,10,11
|
Докажите, что при инверсии сохраняется угол между
окружностями (между окружностью и прямой, между прямыми).
|
|
|
Сложность: 5 Классы: 9,10,11
|
Через точки
A и
B проведены окружности
S1 и
S2,
касающиеся окружности
S, и окружность
S3, перпендикулярная
S.
Докажите, что
S3 образует равные углы с окружностями
S1 и
S2.
|
|
|
Сложность: 5 Классы: 9,10,11
|
Окружность
SA проходит через точки
A и
C; окружность
SB проходит через точки
B и
C; центры обеих окружностей
лежат на прямой
AB. Окружность
S касается окружностей
SA
и
SB, а кроме того, она касается отрезка
AB в точке
C1.
Докажите, что
CC1 — биссектриса треугольника
ABC.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 330]