Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 329]
|
|
Сложность: 7+ Классы: 9,10,11
|
Докажите, что если существует цепочка окружностей
S1,
S2,...,
Sn, каждая из которых касается двух соседних
(
Sn касается
Sn - 1 и
S1) и двух данных непересекающихся
окружностей
R1 и
R2, то таких цепочек бесконечно много.
А именно, для любой окружности
T1, касающейся
R1 и
R2
(одинаковым образом, если
R1 и
R2 не лежат одна в другой,
внешним и внутренним образом в противном случае), существует
аналогичная цепочка из
n касающихся окружностей
T1,
T2,...,
Tn (
поризм Штейнера).
|
|
Сложность: 7+ Классы: 9,10,11
|
Докажите, что для двух непересекающихся окружностей
R1 и
R2
цепочка из
n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями
T1
и
T2, касающимися
R1 и
R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360
o/
n (рис.).
|
|
Сложность: 3 Классы: 8,9,10
|
Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .
С помощью циркуля и линейки постройте окружность данного
радиуса, касающуюся двух данных окружностей.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 329]