Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 285]      



Задача 55405

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что AB + BC = AD + DC.

Прислать комментарий     Решение


Задача 65041

Темы:   [ Две касательные, проведенные из одной точки ]
[ Перегруппировка площадей ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 9,10

Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

Прислать комментарий     Решение

Задача 77958

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 9

Из точки C проведены касательные CA и CB к окружности O. Из произвольной точки N окружности опущены перпендикуляры ND, NE, NF соответственно на прямые A, CA и CB. Докажите, что ND есть среднее геометрическое чисел NE и NF.

Прислать комментарий     Решение

Задача 103939

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средняя линия трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол A равен α,  BC = a.  Вписанная окружность касается прямых AB и AC в точках M и P.
Найти длину хорды, высекаемой на прямой MP окружностью с диаметром BC.

Прислать комментарий     Решение

Задача 55291

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Периметр параллелограмма ABCD равен 26. Угол ABC равен 120o. Радиус окружности, вписанной в треугольник BCD, равен $ \sqrt{3}$. Найдите стороны параллелограмма, если известно, что сторона AD больше стороны AB.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 285]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .