ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



Задача 55711

 [Теорема Монжа.]
Темы:   [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 4+
Классы: 8,9

Докажите, что прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 53482

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3-
Классы: 8,9

У четырёхугольника диагонали равны a и b. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного.

Прислать комментарий     Решение


Задача 56494

Темы:   [ Отношение площадей подобных треугольников ]
[ Свойства симметрии и центра симметрии ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

Прислать комментарий     Решение

Задача 53884

Темы:   [ Замечательное свойство трапеции ]
[ Четырехугольники (построения) ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Прислать комментарий     Решение

Задача 53887

Темы:   [ Замечательное свойство трапеции ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD  (BC || AD).  Точки P, M, Q, N являются серединами сторон AB, BC, CD и DA соответственно.
Докажите, что отрезки AQ, PD и MN пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .