Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 167]      



Задача 53787

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Дан равнобедренный треугольник с основанием 12 и боковой стороной 18. Отрезки какой длины нужно отложить от вершины треугольника на его боковых сторонах, чтобы соединив их концы, получить трапецию с периметром, равным 40?

Прислать комментарий     Решение

Задача 53802

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC. Точка E – середина стороны CD.
Найдите отношение  AD : BC,  если  AE = 2AB  и AECD.

Прислать комментарий     Решение

Задача 53803

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Непараллельные стороны трапеции продолжены до взаимного пересечения и через полученную точку проведена прямая, параллельная основаниям трапеции. Найдите длину отрезка этой прямой, ограниченного продолжениями диагоналей, если длины оснований трапеции равны a и b.

Прислать комментарий     Решение

Задача 53862

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

На основании AD трапеции ABCD взята точка E, причём  AE = BC.  Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если  BO = PD,  то  AD² = BC² + AD·BC.

Прислать комментарий     Решение

Задача 54806

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Через точку пересечения диагоналей трапеции проведена прямая, параллельная основанию и пересекающая боковые стороны в точках E и F. Отрезок EF равен 2. Найдите основания, если их отношение равно 4.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .