Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 507]
B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что ∠XCD = 45°. Hайдите угол FXE.
|
|
Сложность: 2+ Классы: 7,8,9
|
На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?
Биллиард имеет форму выпуклого четырехугольника
ABCD. Из точки K стороны AB выпустили биллиардный шар,
который отразился в точках L, M, N от сторон BC, CD, DA,
возвратился в точку K и вновь вышел на траекторию
KLMN. Докажите, что четырехугольник ABCD можно
вписать в окружность.
|
|
Сложность: 2+ Классы: 7,8,9
|
Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей
которого не имеют общих точек (кроме вершин)?
|
|
Сложность: 3- Классы: 9,10
|
Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой.
Какое наименьшее число вершин может быть у такого многоугольника?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 507]