ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 509]      



Задача 107997

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего ]
Сложность: 4
Классы: 8,9,10,11

Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Прислать комментарий     Решение

Задача 109513

Темы:   [ Турниры и турнирные таблицы ]
[ Разбиения на пары и группы; биекции ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?

Прислать комментарий     Решение


Задача 111665

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники AC1B, BA1C, CB1A с углами 2α, 2β и 2γ при вершинах A1, B1 и C1, причём  α + β + γ = 180°.  Докажите, что углы треугольника A1B1C1 равны α, β и γ.

Прислать комментарий     Решение

Задача 111670

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Прислать комментарий     Решение

Задача 111677

Темы:   [ Признаки и свойства параллелограмма ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 509]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .