Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 73]
|
|
Сложность: 4- Классы: 8,9,10
|
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
|
|
Сложность: 4 Классы: 8,9,10
|
В окружность вписан выпуклый шестиугольник ABCDEF.
а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что AB·CD·EF = BC·DE·FA.
б) Известно, что AB·CD·EF = BC·DE·FA. Докажите, что диагонали AD, BE, CF пересекаются в одной точке.
|
|
Сложность: 5- Классы: 10,11
|
Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же
окружности?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Можно ли раскрасить все точки квадрата и круга в чёрный и белый
цвета так, чтобы множества белых точек этих фигур были подобны друг другу и
множества чёрных точек также были подобны друг другу (возможно, с различными
коэффициентами подобия)?
Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 73]