Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 239]
|
|
Сложность: 4 Классы: 9,10,11
|
Внутри треугольника ABC взята такая точка D, что BD = CD, ∠BDC = 120°. Вне треугольника ABC взята такая точка E, что AE = CE, ∠AEC = 60° и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что ∠AFD = 90°, где F – середина отрезка BE.
|
|
Сложность: 4 Классы: 9,10,11
|
Даны четыре прямые
m1,
m2,
m3,
m4, пересекающиеся в одной точке
O. Через произвольную точку
A1 прямой
m1 проводим прямую, параллельную
прямой
m4, до пересечения с прямой
m2 в точке
A2, через
A2 проводим
прямую, параллельную
m1, до пересечения с
m3 в точке
A3, через
A3
проводим прямую, параллельную
m2, до пересечения с
m4 в точке
A4 и через точку
A4 проводим прямую, параллельную
m3, до пересечения
с
m1 в точке
B.
Доказать, что
OB (см. рис.).
|
|
Сложность: 4 Классы: 8,9,10
|
Доказать, что можно расставить в вершинах правильного n-угольника
действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
|
|
Сложность: 4 Классы: 8,9,10
|
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну
овцу?
Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 239]