Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 241]      



Задача 115912

Темы:   [ Поворотная гомотетия ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC внешним образом построены подобные треугольники: Δ A'BC Δ B'CA Δ C'AB . Докажите, что в треугольниках ABC и A'B'C' точки пересечения медиан совпадают.
Прислать комментарий     Решение


Задача 55601

 [Задача о четырех пятаках.]
Темы:   [ Пересекающиеся окружности ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD — параллелограмм.

Прислать комментарий     Решение


Задача 102485

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 8,9

Вокруг треугольника MKH описана окружность радиуса r с центром в точке O. Длина стороны HM равна a. Для сторон треугольника выполнено соотношение HK2 - HM2 = HM2 - MK2. Найдите площадь треугольника OLK, где L — точка пересечения медиан треугольника MKH.

Прислать комментарий     Решение


Задача 102486

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 8,9

В треугольнике ABC выполнено соотношение между сторонами $ {\frac{AC - AB}{BC + AB}}$ = $ {\frac{AB - BC}{AC + AB}}$. Найдите радиус описанной окружности, если расстояние от ее центра до точки пересечения медиан равно d, а длина стороны AB равна c.

Прислать комментарий     Решение


Задача 57531

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9

Докажите, что если α, β, γ и α1, β1, γ1 – углы двух треугольников, то   cos α1/sin α + cos β1/sin β + cos γ1/sin γ ≤ ctg α + ctg β + ctg γ.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .