Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 78]
Среди всех треугольников с заданными сторонами AB и AC
найдите тот, у которого наибольшая площадь.
|
|
Сложность: 3+ Классы: 8,9,10
|
Прямоугольник ABCD (AB = a, BC = b) сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что S < ¾ ab.
Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на
расстояние
d = 1 во внешнюю сторону. Доказать, что площадь многоугольника
увеличится по крайней мере на 15.
|
|
Сложность: 4 Классы: 7,8,9
|
На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек,
причем никакие три из отмеченных точек не лежат на одной прямой.
Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не
более четверти суммы площадей всех треугольников с отмеченными вершинами.
В квадрате со стороной, равной 1, произвольно берут 101
точку (не обязательно внутри квадрата, возможно, часть на
сторонах), причём никакие три из них не лежат на одной прямой.
Докажите, что существует треугольник с вершинами в этих точках,
площадь которого не больше 0,01.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 78]