Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]
|
|
Сложность: 4+ Классы: 10,11
|
На сторонах
PQ,
QR,
RP треугольника
PQR отложены отрезки
AB,
CD,
EF. Внутри треугольника задана точка
S0. Найти геометрическое место точек
S, лежащих внутри треугольника
PQR, для которых сумма площадей
треугольников
SAB,
SCD,
SEF равна сумме площадей треугольников
S0AB,
S0CD,
S0EF. Рассмотреть особый случай, когда
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
|
|
Сложность: 2+ Классы: 7,8,9
|
Найти множество точек. Даны две точки
А и
В. Найти множество точек, каждая из которых является симметричным образом точки
А относительно некоторой прямой, проходящей через точку
В.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]