ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



Задача 76534

Темы:   [ ГМТ - прямая или отрезок ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4+
Классы: 10,11

На сторонах PQ, QR, RP треугольника PQR отложены отрезки AB, CD, EF. Внутри треугольника задана точка S0. Найти геометрическое место точек S, лежащих внутри треугольника PQR, для которых сумма площадей треугольников SAB, SCD, SEF равна сумме площадей треугольников S0AB, S0CD, S0EF. Рассмотреть особый случай, когда

$\displaystyle {\frac{AB}{PQ}}$ = $\displaystyle {\frac{CD}{QR}}$ = $\displaystyle {\frac{EF}{RP}}$.

Прислать комментарий     Решение

Задача 66815

Темы:   [ ГМТ - прямая или отрезок ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
Прислать комментарий     Решение


Задача 66934

Темы:   [ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Радикальная ось ]
Сложность: 5
Классы: 9,10,11

Авторы: Khurmi A., Sudharshan K.V.

Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
Прислать комментарий     Решение


Задача 56828

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 2-
Классы: 7,8

На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Прислать комментарий     Решение

Задача 102792

Темы:   [ Осевая и скользящая симметрии ]
[ ГМТ - прямая или отрезок ]
Сложность: 2+
Классы: 7,8,9

Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .