Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85]
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.
|
|
Сложность: 6 Классы: 10,11
|
Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
|
|
Сложность: 2+ Классы: 7,8,9
|
Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85]