ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 79]      



Задача 54000

Темы:   [ Геометрические Места Точек ]
[ ГМТ - прямая или отрезок ]
Сложность: 3-
Классы: 8,9

Найдите геометрическое место центров окружностей, касающихся данной прямой в данной точке.

Прислать комментарий     Решение


Задача 53603

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3
Классы: 8,9

Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

Прислать комментарий     Решение

Задача 54248

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведена высота AD. Докажите, что  AB² – AC² = BM² – CM²,  где M – произвольная точка высоты AD.

Прислать комментарий     Решение

Задача 55451

 [Теорема Ньютона.]
Темы:   [ Три точки, лежащие на одной прямой ]
[ ГМТ - прямая или отрезок ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

Прислать комментарий     Решение

Задача 54136

Темы:   [ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место середин всех отрезков, один конец которых лежит на данной прямой, а второй совпадает с данной точкой, не лежащей на этой прямой.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .