Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 132]
|
|
Сложность: 4+ Классы: 8,9,10
|
В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке
B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?
|
|
Сложность: 4+ Классы: 7,8,9
|
В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.
|
|
Сложность: 4+ Классы: 10,11
|
Внутри квадрата
A1A2A3A4 лежит выпуклый четырёхугольник
A5A6A7A8.
Внутри
A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что
можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
|
|
Сложность: 4+ Классы: 8,9,10
|
n точек расположены в вершинах выпуклого n-угольника. Внутри этого
n-угольника отметили k точек. Оказалось, что любые три из n + k точек не
лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему
может быть равно число k?
|
|
Сложность: 5- Классы: 7,8,9
|
а) Из картона вырезали 7 выпуклых многоугольников и
положили на стол так, что любые 6 из них можно прибить к столу двумя
гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол
так, что любые 7 из них можно прибить к столу двумя гвоздями, а
все 8 — нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 132]