ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 298]      



Задача 34953

Темы:   [ Раскраски ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9,10

Каждая точка пространства окрашена в один из пяти цветов, причем каждым из этих пяти цветов окрашена хотя бы одна точка. Докажите, что найдется плоскость, все точки которой окрашены не менее, чем в 4 цвета.
Прислать комментарий     Решение


Задача 66376

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3+
Классы: 5,6,7

Автобусная остановка B расположена на прямолинейном шоссе между остановками A и C. Через некоторое время после выезда из A автобус оказался в такой точке шоссе, что расстояние от неё до одной из трёх остановок равно сумме расстояний до двух других. Ещё через такое же время автобус снова оказался в точке с таким свойством, а ещё через 25 минут доехал до B. Сколько времени требуется автобусу на весь путь от A до C, если его скорость постоянна, а на остановке B он стоит 5 минут?

Прислать комментарий     Решение

Задача 35444

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 9,10

Коридор покрыт несколькими ковровыми дорожками (возможно, с наложениями). Докажите, что можно убрать несколько дорожек таким образом, чтобы оставшиеся дорожки покрывали коридор и сумма их длин не превышала удвоенной длины коридора.
Прислать комментарий     Решение


Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 77893

Темы:   [ Шестиугольники ]
[ Теорема о группировке масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают.
Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .