Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.
Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.
Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:
Уровень воды (см)
5
15
25
35
45
Количество островов
2
5
2
5
0
В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
а) При n = 9 найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
б) Доказать, что при n = 10 такой нумерации осуществить нельзя.
Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При
этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с
помощью таких операций добиться того, что все кубики будут смотреть вверх
гранями одного и того же цвета?