ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1027]      



Задача 98157

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что существует такой набор из 100 различных натуральных чисел c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма     есть квадрат целого числа.

Прислать комментарий     Решение

Задача 98182

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Разрывы функций ]
Сложность: 3+
Классы: 9,10,11

Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)
Прислать комментарий     Решение


Задача 98272

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ НОД и НОК. Взаимная простота ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 7,8,9

Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему общему кратному?
(Среди чисел могут быть равные.)

Прислать комментарий     Решение

Задача 98383

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных?

Прислать комментарий     Решение

Задача 98470

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 10,11

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .