Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 1027]
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что существует такой набор из 100 различных натуральных чисел
c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма есть квадрат целого числа.
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли кусочно-линейная функция f, определённая на отрезке [–1, 1] (включая концы), для которой f(f(x))= – x при всех x?
(Функция называется кусочно-линейной, если её график есть объединение
конечного числа точек и интервалов прямой; она может быть разрывной.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему
общему кратному?
(Среди чисел могут быть равные.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни
на одно из остальных, а квадрат каждого делится на каждое из остальных?
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре
чисел, связанных ребром, одно из них делилось на другое, а во всех других парах
такого не было?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 1027]