Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1036]      



Задача 78697

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 9

Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна?

Прислать комментарий     Решение

Задача 79517

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел.

Прислать комментарий     Решение

Задача 97933

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета?

Прислать комментарий     Решение

Задача 98157

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что существует такой набор из 100 различных натуральных чисел c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма     есть квадрат целого числа.

Прислать комментарий     Решение

Задача 98182

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Разрывы функций ]
Сложность: 3+
Классы: 9,10,11

Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 1036]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .