ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 207]      



Задача 116170

Темы:   [ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.

Прислать комментарий     Решение

Задача 116636

Темы:   [ Правильный (равносторонний) треугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что  MT || BC  и  NT || AB.  Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.

Прислать комментарий     Решение

Задача 108243

Темы:   [ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что  CD = CB1.

Прислать комментарий     Решение

Задача 116502

Темы:   [ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

На стороне AC треугольника ABC отмечена точка K, причём  AK = 2KC  и  ∠ABK = 2∠KBCF – середина стороны AC, L – проекция точки A на BK. Докажите, что прямые FL и BC перпендикулярны.

Прислать комментарий     Решение

Задача 116350

Темы:   [ Теоремы Чевы и Менелая ]
[ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Центр масс ]
Сложность: 3-
Классы: 8,9,10

Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём  AM : MB = 1 : 2,  AN : NC = 3 : 2.  Прямая MN пересекает продолжение стороны BC в точке F. Найдите  CF : BC.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .