Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Если  a ≡ b (mod m)  и  c ≡ d (mod m),  то  a – c ≡ b – d (mod m).

Вниз   Решение


Дан тетраэдр AB С D , в котором AB = 6 , AC = 7 , AD = 3 , BC = 8 , BD = 4 , CD = 5 . Найдите CM , где M – точка пересечения медиан грани ADB .

ВверхВниз   Решение


Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее значение выражения  x²yy²x,  если  0 ≤ x ≤ 1  и  0 ≤ y ≤ 1.

ВверхВниз   Решение


Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

ВверхВниз   Решение


Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера?

ВверхВниз   Решение


Какое число нужно добавить к числу  (n² – 1)1000(n² + 1)1001,  чтобы результат делился на n?

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 207]      



Задача 108125

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что  KL || O1O2.

Прислать комментарий     Решение

Задача 108184

Темы:   [ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

Прислать комментарий     Решение

Задача 108236

Темы:   [ ГМТ - прямая или отрезок ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?

Прислать комментарий     Решение

Задача 108615

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

Прислать комментарий     Решение

Задача 108697

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведена высота CH. Оказалось, что  AH = BC.
Докажите, что биссектриса угла B, высота, опущенная из вершины A, и прямая, проходящая через точку H параллельно BC, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .