Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 199]
|
|
Сложность: 4- Классы: 7,8,9
|
На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?
|
|
Сложность: 4- Классы: 8,9,10
|
На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab. Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.
|
|
Сложность: 4 Классы: 7,8,9
|
Дно прямоугольной коробки вымощено плитками 1 × 4 и 2 × 2. Плитки высыпали из коробки и одна плитка 2 × 2 потерялась. Ее заменили на плитку 1 × 4. Докажите, что теперь дно коробки вымостить не удастся.
В задаче 19 выясните, какие карточки можно получить из карточки (5, 19), а какие нельзя.
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена f и g и заменить их на такие два приведённых многочлена 37-й степени f1 и g1, что f + g = f1 + g1 или fg = f1g1. Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 199]