ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 199]      



Задача 97848

Темы:   [ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

Прислать комментарий     Решение

Задача 98093

Темы:   [ Инварианты ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab.  Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.

Прислать комментарий     Решение

Задача 30763

Темы:   [ Инварианты ]
[ Вспомогательная раскраска ]
Сложность: 4
Классы: 7,8,9

Дно прямоугольной коробки вымощено плитками 1 × 4 и 2 × 2. Плитки высыпали из коробки и одна плитка 2 × 2 потерялась. Ее заменили на плитку 1 × 4. Докажите, что теперь дно коробки вымостить не удастся.

Прислать комментарий     Решение

Задача 30776

Тема:   [ Инварианты ]
Сложность: 4
Классы: 8,9

В задаче 19 выясните, какие карточки можно получить из карточки (5, 19), а какие нельзя.

Прислать комментарий     Решение

Задача 65736

Темы:   [ Инварианты ]
[ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена  f и g и заменить их на такие два приведённых многочлена 37-й степени  f1 и g1, что  f + g = f1 + g1  или  fg = f1g1.  Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .