ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 460]
В треугольнике ABC на стороне AC взята точка M, а на стороне BC — точка N. Отрезки AN и BM пересекаются в точке O. Найдите площадь треугольника CMN, если площади треугольников OMA, OAB и OBN соответственно равны s1, s2 и s3.
Дана трапеция ABCD с основаниями
AD = 3
Дана трапеция PQRN с основаниями PN = 8 и QR = 4, боковой
стороной
PQ =
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
На стороне AB треугольника ABC между точками A и B взята
точка D, причём
AD : AB =
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 460]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке